Skip to main content
Log in

Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaffar, M.K.M., Velmurugan, M., Mohan, R.: A novel guidance algorithm and comparison of nonlinear control strategies applied to an indoor quadrotor. In: 2019 Fifth Indian Control Conference (ICC), pp. 466–471 (2019)

  2. Zhou, L., Zhang, J., She, H., Jin, H.: Quadrotor UAV flight control via a novel saturation integral backstepping controller. Automatika 60(2), 193–206 (2019). Online. Available: https://doi.org/10.1080/00051144.2019.1610838

    Article  Google Scholar 

  3. Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Processing 129, 531–545 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0888327019302791

    Article  Google Scholar 

  4. Zeghlache, S., Saigaa, D., Kara, K., Harrag, A., Bouguerra, A.: Backstepping sliding mode controller improved with fuzzy logic: Application to the quadrotor helicopter. Arc. Control Sci. 22(3), 315–342 (2012). Online Available: https://www.degruyter.com/view/j/acsc.2012.22.issue-3/v10170-011-0027-x/v10170-011-0027-x.xml

    Article  MathSciNet  Google Scholar 

  5. Chen, F., Jiang, R., Zhang, K., Jiang, B., Tao, G.: Robust backstepping sliding-Mode control and observer-Based fault estimation for a quadrotor UAV. IEEE Trans. Ind. Electron. 63(8), 5044–5056 (2016)

    Article  Google Scholar 

  6. Zou, Y.: Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. Int. J. Robust Nonlinear Control 27(6), 925–941 (2017). Online Available: http://onlinelibrary.wiley.com/doi/10.1002/rnc.3607/abstract

    Article  MathSciNet  Google Scholar 

  7. Wang, X., Lin, X., Yu, Y., Wang, Q., Sun, C.: Backstepping control for quadrotor with BP neural network based thrust model. In 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC,), pp. 292–297 (2017)

  8. Miranda-Colorado, R., Aguilar, L.T., Herrero-Brito, J.E.: Reduction of power consumption on quadrotor vehicles via trajectory design and a controller-gains tuning stage. Aero. Sci. Technol. 78, 280–296 (2018). Online Available: http://www.sciencedirect.com/science/article/pii/S1270963817319028

    Article  Google Scholar 

  9. Shi, X., Cheng, Y., Yin, C., Dadras, S., Huang, X.: Design of Fractional-Order Backstepping Sliding Mode Control for Quadrotor UAV. Asian J. Control 21(1), 156–171 (2019). Online Available: https://onlinelibrary.wiley.com/doi/full/10.1002/asjc.1946

    Article  MathSciNet  Google Scholar 

  10. Özbek, N.S., Önkol, M., Efe, M.: Feedback control strategies for quadrotor-type aerial robots: a survey. Trans. Inst. Meas. Control 38(5), 529–554 (2016). Online Available: https://doi.org/10.1177/0142331215608427

    Article  Google Scholar 

  11. Lee, H., Kim, H.J.: Trajectory tracking control of multirotors from modelling to experiments: A survey. Int. J. Control, Automation Syst. 15(1), 281–292 (2017). Online Available: https://doi.org/10.1007/s12555-015-0289-3

    Article  Google Scholar 

  12. Mo, H., Farid, G.: Nonlinear and Adaptive Intelligent Control Techniques for Quadrotor UAV – A Survey. Asian J. Control 21(2), 989–1008 (2019). Online Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.1758

    Article  MathSciNet  Google Scholar 

  13. Chenlu, W., Zengqiang, C., Qinglin, S., Qing, Z.: Design of PID and ADRC based quadrotor helicopter control system. In 2016 Chinese Control and Decision Conference (CCDC,), pp. 5860–5865 (2016)

  14. Cai, W., She, J., Wu, M., Ohyama, Y.: Disturbance suppression for quadrotor uav using sliding-mode-observer-based equivalent-input-disturbance approach. ISA Trans. 92, 286–297 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0019057819301028

    Article  Google Scholar 

  15. Miranda-Colorado, R.: Finite-time sliding mode controller for perturbed second-order systems. ISA Trans. Online Available: http://www.sciencedirect.com/science/article/pii/S0019057819302587 (2019)

  16. Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Process. 129, 531–545 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0888327019302791

    Article  Google Scholar 

  17. Zhao, K., Zhang, J., Ma, D., Xia, Y.: Composite disturbance rejection attitude control for quadrotor with unknown disturbance. IEEE Trans. Ind. Electron. 1–1 (2019)

  18. Zhou, J., Cheng, Y., Du, H., Wu, D., Zhu, M., Lin, X.: Active finite-time disturbance rejection control for attitude tracking of quad-rotor under input saturation. Journal of the Franklin Institute, Online Available: http://www.sciencedirect.com/science/article/pii/S0016003219303497 (2019)

  19. Sierra, J.E., Santos, M.: Wind and payload disturbance rejection control based on adaptive neural estimators: application on quadrotors. Complexity 2019 (2019)

  20. Yuan, Y., Cheng, L., Wang, Z., Sun, C.: Position tracking and attitude control for quadrotors via active disturbance rejection control method. Science China Information Sciences 62(1), 10201 (2018). Online Available: https://doi.org/10.1007/s11432-018-9548-5

    Article  Google Scholar 

  21. Lotufo, M.A., Colangelo, L., Perez-Montenegro, C., Canuto, E., Novara, C.: Uav quadrotor attitude control: An adrc-emc combined approach. Control Eng. Pract. 84, 13–22 (2019). Online Available http://www.sciencedirect.com/science/article/pii/S0967066118305148

    Article  Google Scholar 

  22. Castillo, A., Sanz, R., Garcia, P., Qiu, W., Wang, H., Xu, C.: Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers. Control Eng. Pract. 82, 14–23 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S096706611830563X

    Article  Google Scholar 

  23. Kotyczka, P., Koch, G., Pellegrini, E., Lohmann, B.: 8th IFAC Symposium on Nonlinear Control SystemsTransparent Parametrization of Nonlinear IDA-PBC for a Hydraulic Actuator. IFAC Proceedings Volumes 43(14), 1122–1127 (2010)

    Article  Google Scholar 

  24. Neves, L.C., Paim, G.V., Queinnec, I., Moreno, U.F., De Pieri, E.R.: Passivity and Power Based Control of a Robot with Parallel Architecture*. IFAC Proceedings Volumes 44(1), 14608–14613 (2011). Online Available: http://www.sciencedirect.com/science/article/pii/S1474667016459768

    Article  Google Scholar 

  25. Ryalat, M., Laila, D.S.: A simplified IDA-PBC design for underactuated mechanical systems with applications. Europ. J. Control 27, 1–16 (2016). Online Available: http://linkinghub.elsevier.com/retrieve/pii/S0947358015001296

    Article  MathSciNet  Google Scholar 

  26. Gandarilla, I., Santibañez, V., Sandoval, J.: Control of a self-balancing robot with two degrees of freedom via IDA-PBC. ISA Trans. 88, 102–112 (2019). Online Available: http://www.sciencedirect.com/science/article/pii/S0019057818305093

    Article  Google Scholar 

  27. Bouzid, Y., Siguerdidjane, H., bestaoui, Y., Zareb, M.: Energy Based 3D Autopilot for VTOL UAV Under Guidance &; Navigation Constraints. J. Intell. Robot Syst. 1–22 (2016)

  28. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Energy based 3d trajectory tracking control of quadrotors with model-free based on-line disturbance compensation. Chinese J. Aeronaut. 31(7), 1568–1578 (2018). Online Available: http://www.sciencedirect.com/science/article/pii/S1000936118301675

    Article  Google Scholar 

  29. Romero, J.G., Donaire, A., Ortega, R.: Robust energy shaping control of mechanical systems. Syst. Control Letters 62(9), 770–780 (2013)

    Article  MathSciNet  Google Scholar 

  30. Ryalat, M., Laila, D.S.: A robust ida-pbc approach for handling uncertainties in underactuated mechanical systems. IEEE Trans. Autom. Control 63(10), 3495–3502 (2018)

    Article  MathSciNet  Google Scholar 

  31. Donaire, A., Junco, S.: On the addition of integral action to port-controlled hamiltonian systems. Automatica 45(8), 1910–1916 (2009)

    Article  MathSciNet  Google Scholar 

  32. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Generic dynamic modeling for multirotor VTOL UAVs and robust Sliding Mode based Model-Free, Control for 3d navigation. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 970–979 (2018)

  33. Ortega, R., García-Canseco, E.: Interconnection and damping assignment passivity-Based control: a survey. Eur. J. Control. 10(5), 432–450 (2004)

    Article  MathSciNet  Google Scholar 

  34. Byrnes, C.I., Isidori, A., Willems, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Trans. Autom. Control 36(11), 1228–1240 (1991)

    Article  MathSciNet  Google Scholar 

  35. Ortega, R., Spong, M.W., Gomez-Estern, F., Blankenstein, G.: Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Autom. Control 47(8), 1218–1233 (2002)

    Article  MathSciNet  Google Scholar 

  36. Gómez-Estern, F., Van der Schaft, A.J.: Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. Europ. J. Control 10(5), 451–468 (2004). Online Available: http://www.sciencedirect.com/science/article/pii/S0947358004703921

    Article  MathSciNet  Google Scholar 

  37. Huang, C., Li, J., Mu, S., Yan, H.: Linear active disturbance rejection control approach for load frequency control of two-area interconnected power system. Trans. Inst. of Meas. Control 41(6), 1562–1570 (2019). Online Available: https://doi.org/10.1177/0142331217701539

    Article  Google Scholar 

  38. Lamraoui, H.C, Qidan, Z.: Speed tracking control of unicycle type mobile robot based on LADRC. 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), 200–204 (2017)

  39. Pérez-Alcocer, R., Moreno-Valenzuela, J., Miranda-Colorado, R.: A robust approach for trajectory tracking control of a quadrotor with experimental validation. ISA Trans. 65(Supplement C), 262–274 (2016). Online Available: http://www.sciencedirect.com/science/article/pii/S0019057816301598

    Article  Google Scholar 

  40. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: 3d trajectory tracking control of quadrotor UAV with on-line disturbance compensation. In 2017 IEEE Conference on Control Technology and Applications (CCTA,), 2082–2087 (2017)

  41. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Nonlinear internal model control applied to VTOL multi-rotors UAV. Mechatronics 47, 49–66 (2017). Online Available: http://www.sciencedirect.com/science/article/pii/S0957415817301046

    Article  Google Scholar 

  42. Bristeau, P.-J., Callou, F., Vissière, D., Petit, N.: The Navigation and Control technology inside the AR.Drone micro UAV. IFAC Proceed. Volumes 44(1), 1477–1484 (2011). Online Available: http://www.sciencedirect.com/science/article/pii/S1474667016438188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houria Siguerdidjane.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 6.95 MB)

(MP4 78.2 MB)

(MP4 6.39 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, Y., Zareb, M., Siguerdidjane, H. et al. Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation. J Intell Robot Syst 100, 597–614 (2020). https://doi.org/10.1007/s10846-020-01182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-020-01182-4

Keywords

Navigation